Flytte gjennomsnitt: Hva er de Blant de mest populære tekniske indikatorene, er glidende gjennomsnitt brukt til å måle retningen for den nåværende trenden. Hver type bevegelige gjennomsnitt (vanligvis skrevet i denne opplæringen som MA) er et matematisk resultat som beregnes ved å beregne et antall tidligere datapunkter. Når det er bestemt, blir det resulterende gjennomsnittet plottet på et diagram for å tillate handelsmenn å se på glatt data, i stedet for å fokusere på de daglige prisfluktuasjonene som er iboende i alle finansmarkeder. Den enkleste formen for et bevegelige gjennomsnitt, riktig kjent som et enkelt glidende gjennomsnitt (SMA), beregnes ved å ta det aritmetiske gjennomsnittet av et gitt sett av verdier. For eksempel, for å beregne et grunnleggende 10-dagers glidende gjennomsnitt vil du legge til sluttkursene fra de siste 10 dagene, og deretter dele resultatet med 10. I figur 1 er summen av prisene for de siste 10 dagene (110) dividert med antall dager (10) for å komme fram til 10-dagers gjennomsnittet. Hvis en forhandler ønsker å se et 50-dagers gjennomsnitt i stedet, vil samme type beregning bli gjort, men det vil inkludere prisene i løpet av de siste 50 dagene. Det resulterende gjennomsnittet under (11) tar hensyn til de siste 10 datapunktene for å gi handelsmenn en ide om hvordan en eiendel er priset i forhold til de siste 10 dagene. Kanskje du lurer på hvorfor tekniske handelsfolk kaller dette verktøyet et bevegelige gjennomsnitt og ikke bare en vanlig gjennomsnitt. Svaret er at når nye verdier blir tilgjengelige, må de eldste datapunktene slippes fra settet og nye datapunkter må komme inn for å erstatte dem. Dermed går datasettet kontinuerlig til å regne for nye data etter hvert som det blir tilgjengelig. Denne beregningsmetoden sikrer at bare den nåværende informasjonen blir regnskapsført. I figur 2 flyttes den røde boksen (som representerer de siste 10 datapunktene) til høyre, og den siste verdien av 15 blir tapt fra beregningen når den nye verdien av 5 er lagt til settet. Fordi den relativt små verdien av 5 erstatter den høye verdien på 15, ville du forvente å se gjennomsnittet av datasettets reduksjon, som det gjør, i dette tilfellet fra 11 til 10. Hva ser Moving Averages Like Når verdiene til MA har blitt beregnet, de er plottet på et diagram og deretter koblet til for å skape en bevegelig gjennomsnittslinje. Disse svingete linjene er vanlige på diagrammer av tekniske handelsfolk, men hvordan de brukes kan variere drastisk (mer om dette senere). Som du kan se i figur 3, er det mulig å legge til mer enn ett glidende gjennomsnitt i et diagram ved å justere antall tidsperioder som brukes i beregningen. Disse svingete linjene kan virke distraherende eller forvirrende i begynnelsen, men du vil bli vant til dem når tiden går videre. Den røde linjen er bare gjennomsnittsprisen de siste 50 dagene, mens den blå linjen er gjennomsnittsprisen de siste 100 dagene. Nå som du forstår hva et glidende gjennomsnitt er, og hvordan det ser ut, kan du godt presentere en annen type glidende gjennomsnitt og undersøke hvordan det er forskjellig fra det tidligere nevnte enkle glidende gjennomsnittet. Det enkle glidende gjennomsnittet er ekstremt populært blant handelsfolk, men som alle tekniske indikatorer har det kritikere. Mange individer hevder at bruken av SMA er begrenset fordi hvert punkt i dataserien vektes det samme, uavhengig av hvor det forekommer i sekvensen. Kritikere hevder at de nyeste dataene er mer signifikante enn de eldre dataene, og bør ha større innflytelse på sluttresultatet. Som svar på denne kritikken begynte handelsmenn å gi mer vekt på nyere data, som siden har ført til oppfinnelsen av ulike typer nye gjennomsnitt, hvorav den mest populære er det eksponentielle glidende gjennomsnittet (EMA). (For videre lesing, se Grunnleggende om vektede bevegelige gjennomsnitt og hva som er forskjellen mellom en SMA og en EMA) Eksponentiell flytende gjennomsnitt Det eksponentielle glidende gjennomsnittet er en type bevegelige gjennomsnitt som gir mer vekt til de siste prisene i et forsøk på å gjøre det mer responsivt til ny informasjon. Å lære den noe kompliserte ligningen for å beregne en EMA kan være unødvendig for mange forhandlere, siden nesten alle kartleggingspakker gjør beregningene for deg. Men for deg matematiske geeks der ute, her er EMA-ligningen: Når du bruker formelen til å beregne det første punktet til EMA, kan det hende du merker at det ikke er noen verdi tilgjengelig for bruk som den forrige EMA. Dette lille problemet kan løses ved å starte beregningen med et enkelt glidende gjennomsnitt og fortsette videre med den ovennevnte formelen derfra. Vi har gitt deg et eksempelkart som inneholder virkelige eksempler på hvordan du kan beregne både et enkelt glidende gjennomsnitt og et eksponentielt glidende gjennomsnitt. Forskjellen mellom EMA og SMA Nå som du har en bedre forståelse av hvordan SMA og EMA beregnes, kan vi se på hvordan disse gjennomsnittene er forskjellige. Ved å se på beregningen av EMA, vil du legge merke til at det legges større vekt på de siste datapunktene, noe som gjør det til en type vektet gjennomsnitt. I figur 5 er antall tidsperioder som brukes i hvert gjennomsnitt identisk (15), men EMA reagerer raskere på de endrede prisene. Legg merke til hvordan EMA har en høyere verdi når prisen stiger, og faller raskere enn SMA når prisen senker. Denne responsen er den viktigste grunnen til at mange handelsmenn foretrekker å bruke EMA over SMA. Hva betyr de forskjellige dagene Gjennomsnittlig flytteverdi er en helt tilpassbar indikator, noe som betyr at brukeren fritt kan velge hvilken tidsramme de vil ha når man lager gjennomsnittet. De vanligste tidsperioder som brukes i bevegelige gjennomsnitt er 15, 20, 30, 50, 100 og 200 dager. Jo kortere tidsrammen som brukes til å skape gjennomsnittet, jo mer følsomt blir det for prisendringer. Jo lengre tidsrom, jo mindre følsomt, eller mer utjevnet, vil gjennomsnittet være. Det er ingen riktig tidsramme som skal brukes når du oppretter dine bevegelige gjennomsnitt. Den beste måten å finne ut hvilken som passer best for deg, er å eksperimentere med en rekke forskjellige tidsperioder til du finner en som passer til din strategi. Flytte gjennomsnitt: Slik bruker du demMoving Gjennomsnittlig Forecasting Introduksjon. Som du kanskje tror vi ser på noen av de mest primitive tilnærmingene til prognoser. Men forhåpentligvis er disse minst en verdig innføring i noen av databehandlingsproblemene knyttet til implementering av prognoser i regneark. I denne veinen vil vi fortsette med å starte i begynnelsen og begynne å jobbe med Moving Average prognoser. Flytte gjennomsnittlige prognoser. Alle er kjent med å flytte gjennomsnittlige prognoser, uansett om de tror de er. Alle studenter gjør dem hele tiden. Tenk på testresultatene dine i et kurs der du skal ha fire tester i løpet av semesteret. La oss anta at du fikk en 85 på din første test. Hva vil du forutsi for din andre testscore Hva tror du at læreren din ville forutsi for din neste testscore Hva tror du dine venner kan forutsi for din neste testscore Hva tror du at foreldrene dine kan forutsi for neste testresultat uansett om alt det du kan gjøre med dine venner og foreldre, de og din lærer er veldig sannsynlig å forvente deg å få noe i området av 85 du nettopp har fått. Vel, nå kan vi anta at til tross for selvforfremmelse til vennene dine, overestimerer du deg selv og figurerer du kan studere mindre for den andre testen, og så får du en 73. Nå er det alle de bekymrede og ubekymrede går til Forvent deg at du kommer på den tredje testen. Det er to svært sannsynlige tilnærminger for dem å utvikle et estimat, uansett om de vil dele det med deg. De kan si til seg selv, at denne fyren alltid blåser røyk om hans smarts. Hes kommer til å få en annen 73 hvis han er heldig. Kanskje foreldrene vil prøve å være mer støttende og si, quote, så langt har du fått en 85 og en 73, så kanskje du burde finne på å få en (85 73) 2 79. Jeg vet ikke, kanskje hvis du gjorde mindre fest og werent vevet vasselen over alt, og hvis du begynte å gjøre mye mer å studere, kan du få en høyere score. quot Begge disse estimatene flytter faktisk gjennomsnittlige prognoser. Den første bruker bare din siste poengsum for å prognose din fremtidige ytelse. Dette kalles en flytende gjennomsnittlig prognose ved hjelp av en periode med data. Den andre er også en flytende gjennomsnittlig prognose, men bruker to perioder med data. La oss anta at alle disse menneskene bråser på ditt store sinn, har slags pisset deg av og du bestemmer deg for å gjøre det bra på den tredje testen av dine egne grunner og for å sette en høyere poengsum foran din quotalliesquot. Du tar testen og poengsummen din er faktisk en 89 Alle, inkludert deg selv, er imponert. Så nå har du den endelige testen av semesteret som kommer opp, og som vanlig føler du behovet for å få alle til å gjøre sine spådommer om hvordan du skal gjøre på den siste testen. Vel, forhåpentligvis ser du mønsteret. Nå, forhåpentligvis kan du se mønsteret. Hvilke tror du er den mest nøyaktige fløyten mens vi jobber. Nå går vi tilbake til vårt nye rengjøringsfirma som startes av din fremmedgjorte halv søster, kalt Whistle While We Work. Du har noen tidligere salgsdata som er representert av følgende del fra et regneark. Vi presenterer først dataene for en tre-års glidende gjennomsnittlig prognose. Oppføringen for celle C6 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C7 til C11. Legg merke til hvordan gjennomsnittet beveger seg over de nyeste historiske dataene, men bruker nøyaktig de tre siste perioder som er tilgjengelige for hver prediksjon. Du bør også legge merke til at vi ikke virkelig trenger å gjøre spådommene for de siste perioder for å utvikle vår siste prediksjon. Dette er definitivt forskjellig fra eksponentiell utjevningsmodell. Ive inkluderte quotpast predictionsquot fordi vi vil bruke dem på neste nettside for å måle prediksjonsgyldigheten. Nå vil jeg presentere de analoge resultatene for en to-års glidende gjennomsnittlig prognose. Oppføringen for celle C5 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C6 til C11. Legg merke til hvordan nå bare de to siste stykkene av historiske data blir brukt for hver prediksjon. Igjen har jeg tatt med quotpast predictionsquot for illustrative formål og for senere bruk i prognose validering. Noen andre ting som er viktig å legge merke til. For en m-periode som beveger gjennomsnittlig prognose, brukes bare de nyeste dataverdiene for å gjøre prognosen. Ingenting annet er nødvendig. For en m-periode som beveger gjennomsnittlig prognose, legger du merke til at den første prediksjonen forekommer i periode m 1. Begge disse problemene vil være svært viktige når vi utvikler koden vår. Utvikle den bevegelige gjennomsnittsfunksjonen. Nå må vi utvikle koden for den bevegelige gjennomsnittlige prognosen som kan brukes mer fleksibelt. Koden følger. Legg merke til at inngangene er for antall perioder du vil bruke i prognosen og rekke historiske verdier. Du kan lagre den i hvilken arbeidsbok du vil ha. Funksjon MovingAverage (Historical, NumberOfPeriods) Som Single Deklarering og Initialisering av variabler Dim Item Som Variant Dim Counter Som Integer Dim Akkumulering Som Single Dim HistoricalSize Som Integer Initialiserende variabler Teller 1 Akkumulering 0 Bestemme størrelsen på Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulere riktig antall siste tidligere observerte verdier Akkumulasjonsakkumulering Historisk (HistoricalSize - NumberOfPeriods Counter) MovingAverage AkkumuleringsnummerOfPeriods Koden vil bli forklart i klassen. Du vil plassere funksjonen på regnearket slik at resultatet av beregningen vises der det skal like følgende. Innføring i ARIMA: Nonseasonal modeller ARIMA (p, d, q) prognoser likning: ARIMA-modeller er i teorien mest generell klasse av modeller for å prognose en tidsserie som kan gjøres for å være 8220stationary8221 ved differensiering (om nødvendig), kanskje i forbindelse med ikke-lineære transformasjoner som logging eller deflatering (om nødvendig). En tilfeldig variabel som er en tidsserie er stasjonær hvis dens statistiske egenskaper er konstante over tid. En stasjonær serie har ingen trend, dens variasjoner rundt sin gjennomsnitt har en konstant amplitude, og den svinger på en konsistent måte. det vil si at kortsiktige tilfeldige tidsmønstre alltid ser like ut i statistisk forstand. Den sistnevnte tilstanden betyr at dets autokorrelasjoner (korrelasjoner med sine egne tidligere avvik fra gjennomsnittet) forblir konstante over tid, eller tilsvarende, at dets effektspektrum forblir konstant over tid. En tilfeldig variabel av dette skjemaet kan ses som en kombinasjon av signal og støy, og signalet (hvis det er tydelig) kan være et mønster av rask eller saksom gjennomsnittlig reversering eller sinusformet svingning eller rask veksling i skiltet , og det kan også ha en sesongbestemt komponent. En ARIMA-modell kan ses som en 8220filter8221 som forsøker å skille signalet fra støyen, og signalet blir deretter ekstrapolert inn i fremtiden for å oppnå prognoser. ARIMA-prognose-ligningen for en stasjonær tidsserie er en lineær (dvs. regresjonstype) ekvation hvor prediktorene består av lag av de avhengige variable ogor lagene av prognosefeilene. Det er: Forutsigbar verdi for Y en konstant og en vektet sum av en eller flere nylige verdier av Y og eller en vektet sum av en eller flere nylige verdier av feilene. Hvis prediktorene kun består av forsinkede verdier av Y. Det er en ren autoregressiv (8220self-regressed8221) modell, som bare er et spesielt tilfelle av en regresjonsmodell, og som kunne være utstyrt med standard regresjonsprogramvare. For eksempel er en førsteordens autoregressiv (8220AR (1) 8221) modell for Y en enkel regresjonsmodell der den uavhengige variabelen bare er Y forsinket med en periode (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Hvis noen av prediktorene er lags av feilene, er en ARIMA-modell det IKKE en lineær regresjonsmodell, fordi det ikke er mulig å spesifisere 8220last period8217s error8221 som en uavhengig variabel: feilene må beregnes fra tid til annen når modellen er montert på dataene. Fra et teknisk synspunkt er problemet med å bruke forsinkede feil som prediktorer at modellen8217s spådommer ikke er lineære funksjoner av koeffisientene. selv om de er lineære funksjoner av tidligere data. Så koeffisienter i ARIMA-modeller som inkluderer forsinkede feil må estimeres ved ikke-lineære optimaliseringsmetoder (8220hill-klatring8221) i stedet for bare å løse et system av ligninger. Akronymet ARIMA står for Auto-Regressive Integrated Moving Average. Lags av den stationære serien i prognosekvotasjonen kalles kvotoregressivequot-termer. Lags av prognosefeilene kalles quotmoving averagequot vilkår, og en tidsserie som må differensieres for å bli stillestående, sies å være en quotintegratedquot-versjon av en stasjonær serie. Tilfeldige gange og tilfeldige trendmodeller, autoregressive modeller og eksponentielle utjevningsmodeller er alle spesielle tilfeller av ARIMA-modeller. En nonseasonal ARIMA-modell er klassifisert som en quotARIMA (p, d, q) kvotemodell hvor: p er antall autoregressive termer, d er antall ikke-sekundære forskjeller som trengs for stasjonar, og q er antall forsinkede prognosefeil i prediksjonsligningen. Forutsigelsesligningen er konstruert som følger. Først, la y betegne den d forskjellen på Y. Det betyr: Merk at den andre forskjellen på Y (d2-saken) ikke er forskjellen fra 2 perioder siden. Snarere er det den første forskjellen-av-første forskjellen. som er den diskrete analogen til et andre derivat, det vil si den lokale akselerasjonen av serien i stedet for sin lokale trend. Når det gjelder y. Den generelle prognosekvasjonen er: Her er de bevegelige gjennomsnittsparametrene (9528217s) definert slik at deres tegn er negative i ligningen, etter konvensjonen innført av Box og Jenkins. Noen forfattere og programvare (inkludert R programmeringsspråket) definerer dem slik at de har pluss tegn i stedet. Når faktiske tall er koblet til ligningen, er det ingen tvetydighet, men det er viktig å vite hvilken konvensjon programvaren bruker når du leser utgangen. Ofte er parametrene benevnt der av AR (1), AR (2), 8230 og MA (1), MA (2), 8230 etc. For å identifisere den aktuelle ARIMA modellen for Y. begynner du ved å bestemme differensordren (d) trenger å stasjonærisere serien og fjerne bruttoegenskapene til sesongmessighet, kanskje i forbindelse med en variansstabiliserende transformasjon som logging eller deflating. Hvis du stopper på dette punktet og forutsier at den forskjellige serien er konstant, har du bare montert en tilfeldig tur eller tilfeldig trendmodell. Den stasjonære serien kan imidlertid fortsatt ha autokorrelerte feil, noe som tyder på at noen antall AR-termer (p 8805 1) og eller noen nummer MA-termer (q 8805 1) også er nødvendig i prognosekvasjonen. Prosessen med å bestemme verdiene p, d og q som er best for en gitt tidsserie, vil bli diskutert i senere avsnitt av notatene (hvis koblinger er øverst på denne siden), men en forhåndsvisning av noen av typene av nonseasonal ARIMA-modeller som ofte oppstår, er gitt nedenfor. ARIMA (1,0,0) førstegangs autoregressiv modell: Hvis serien er stasjonær og autokorrelert, kan den kanskje forutsies som et flertall av sin egen tidligere verdi, pluss en konstant. Forutsigelsesligningen i dette tilfellet er 8230 som er Y regressert i seg selv forsinket med en periode. Dette er en 8220ARIMA (1,0,0) constant8221 modell. Hvis gjennomsnittet av Y er null, vil ikke det konstante begrepet bli inkludert. Hvis hellingskoeffisienten 981 1 er positiv og mindre enn 1 i størrelsesorden (den må være mindre enn 1 i størrelsesorden dersom Y er stasjonær), beskriver modellen gjennomsnittsreferanseadferd hvor neste periode8217s verdi skal anslås å være 981 1 ganger som langt unna gjennomsnittet som denne perioden8217s verdi. Hvis 981 1 er negativ, forutser det middelreferanseadferd med skifting av tegn, dvs. det forutsier også at Y vil være under gjennomsnittlig neste periode hvis den er over gjennomsnittet denne perioden. I en andre-ordregivende autoregressiv modell (ARIMA (2,0,0)), ville det være et Y t-2 begrep til høyre også, og så videre. Avhengig av tegnene og størrelsene på koeffisientene, kunne en ARIMA (2,0,0) modell beskrive et system hvis gjennomsnitts reversering foregår i sinusformet oscillerende mote, som bevegelse av en masse på en fjær som er utsatt for tilfeldige støt . ARIMA (0,1,0) tilfeldig tur: Hvis serien Y ikke er stasjonær, er den enkleste modellen for den en tilfeldig turmodell, som kan betraktes som et begrensende tilfelle av en AR (1) modell der autoregressive koeffisienten er lik 1, det vil si en serie med uendelig sakte gjennomsnittlig reversering. Forutsigelsesligningen for denne modellen kan skrives som: hvor den konstante sikt er den gjennomsnittlige perioden til periode-endringen (dvs. den langsiktige driften) i Y. Denne modellen kan monteres som en ikke-avskjæringsregresjonsmodell der Første forskjell på Y er den avhengige variabelen. Siden den inneholder (bare) en ikke-soneforskjell og en konstant periode, er den klassifisert som en quotARIMA (0,1,0) modell med constant. quot. Den tilfeldig-walk-uten-drift-modellen ville være en ARIMA (0,1, 0) modell uten konstant ARIMA (1,1,0) forskjellig førsteordens autoregressiv modell: Hvis feilene i en tilfeldig turmodell er autokorrelert, kan problemet løses ved å legge til et lag av den avhengige variabelen til prediksjonsligningen - - dvs ved å regresse den første forskjellen på Y i seg selv forsinket med en periode. Dette vil gi følgende prediksjonsligning: som kan omarrangeres til Dette er en førsteordens autoregressiv modell med en rekkefølge av ikke-soneforskjeller og en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) uten konstant enkel eksponensiell utjevning: En annen strategi for korrigering av autokorrelerte feil i en tilfeldig gangmodell er foreslått av den enkle eksponensielle utjevningsmodellen. Husk at for noen ikke-stationære tidsserier (for eksempel de som viser støyende svingninger rundt et sakte varierende gjennomsnitt), utfører ikke den tilfeldige turmodellen så vel som et glidende gjennomsnittsverdier av tidligere verdier. Med andre ord, i stedet for å ta den nyeste observasjonen som prognosen for neste observasjon, er det bedre å bruke et gjennomsnitt av de siste observasjonene for å filtrere ut støy og mer nøyaktig anslå det lokale gjennomsnittet. Den enkle eksponensielle utjevningsmodellen bruker et eksponentielt vektet glidende gjennomsnitt av tidligere verdier for å oppnå denne effekten. Forutsigelsesligningen for den enkle eksponensielle utjevningsmodellen kan skrives i en rekke matematisk ekvivalente former. hvorav den ene er den såkalte 8220error correction8221 skjemaet, der den forrige prognosen er justert i retning av feilen det gjorde: Fordi e t-1 Y t-1 - 374 t-1 per definisjon kan dette omskrives som : som er en ARIMA (0,1,1) - out-konstant prognosekvasjon med 952 1 1 - 945. Dette betyr at du kan passe en enkel eksponensiell utjevning ved å angi den som en ARIMA (0,1,1) modell uten konstant, og den estimerte MA (1) - koeffisienten tilsvarer 1-minus-alfa i SES-formelen. Husk at i SES-modellen er gjennomsnittsalderen for dataene i 1-periode fremover prognosene 1 945. Det betyr at de vil ha en tendens til å ligge bak trender eller vendepunkter med ca 1 945 perioder. Det følger at gjennomsnittlig alder av dataene i 1-periode fremover prognosene for en ARIMA (0,1,1) uten konstant modell er 1 (1 - 952 1). For eksempel, hvis 952 1 0,8 er gjennomsnittsalderen 5. Når 952 1 nærmer seg 1, blir ARIMA (0,1,1) uten konstant modell et veldig langsiktig glidende gjennomsnitt og som 952 1 nærmer seg 0 blir det en tilfeldig tur uten drivmodell. What8217s den beste måten å korrigere for autokorrelasjon: legge til AR-vilkår eller legge til MA-vilkår I de to foregående modellene ble problemet med autokorrelerte feil i en tilfeldig turmodell løst på to forskjellige måter: ved å legge til en forsinket verdi av differensierte serier til ligningen eller legge til en forsinket verdi av prognosen feil. Hvilken tilnærming er best En tommelfingerregel for denne situasjonen, som vil bli nærmere omtalt senere, er at positiv autokorrelasjon vanligvis behandles best ved å legge til et AR-uttrykk for modellen og negativ autokorrelasjon vanligvis behandles best ved å legge til en MA term. I forretnings - og økonomiske tidsserier oppstår negativ autokorrelasjon ofte som en artefakt av differensiering. (Generelt reduserer differensiering positiv autokorrelasjon og kan til og med føre til en bryter fra positiv til negativ autokorrelasjon.) Så, ARIMA (0,1,1) modellen, der differensiering er ledsaget av en MA-term, brukes hyppigere enn en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel eksponensiell utjevning med vekst: Ved å implementere SES-modellen som en ARIMA-modell, får du faktisk en viss fleksibilitet. Først og fremst er estimert MA (1) - koeffisient tillatt å være negativ. Dette tilsvarer en utjevningsfaktor som er større enn 1 i en SES-modell, som vanligvis ikke er tillatt i SES-modellprosedyren. For det andre har du muligheten til å inkludere en konstant periode i ARIMA-modellen hvis du ønsker det, for å estimere en gjennomsnittlig ikke-null trend. ARIMA-modellen (0,1,1) med konstant har prediksjonsligningen: Forventningene for en periode fremover fra denne modellen er kvalitativt lik SES-modellen, bortsett fra at bane av de langsiktige prognosene vanligvis er en skrånende linje (hvis skråning er lik mu) i stedet for en horisontal linje. ARIMA (0,2,1) eller (0,2,2) uten konstant lineær eksponensiell utjevning: Linjære eksponentielle utjevningsmodeller er ARIMA-modeller som bruker to ikke-soneforskjeller i sammenheng med MA-termer. Den andre forskjellen i en serie Y er ikke bare forskjellen mellom Y og seg selv forsinket av to perioder, men det er den første forskjellen i den første forskjellen - dvs. Y-endringen i Y i periode t. Således er den andre forskjellen på Y ved periode t lik (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En annen forskjell på en diskret funksjon er analog med et andre derivat av en kontinuerlig funksjon: den måler kvoteringsberegningsquot eller kvoturvitaquot i funksjonen på et gitt tidspunkt. ARIMA-modellen (0,2,2) uten konstant forutser at den andre forskjellen i serien er lik en lineær funksjon av de to siste prognosefeilene: som kan omarrangeres som: hvor 952 1 og 952 2 er MA (1) og MA (2) koeffisienter. Dette er en generell lineær eksponensiell utjevningsmodell. i hovedsak det samme som Holt8217s modell, og Brown8217s modell er et spesielt tilfelle. Den bruker eksponensielt vektede glidende gjennomsnitt for å anslå både et lokalt nivå og en lokal trend i serien. De langsiktige prognosene fra denne modellen konvergerer til en rett linje hvis skråning avhenger av den gjennomsnittlige trenden observert mot slutten av serien. ARIMA (1,1,2) uten konstant fuktet trend lineær eksponensiell utjevning. Denne modellen er illustrert i de tilhørende lysbildene på ARIMA-modellene. Den ekstrapolerer den lokale trenden i slutten av serien, men flater ut på lengre prognoshorisonter for å introdusere et konservatismedokument, en praksis som har empirisk støtte. Se artikkelen om hvorfor Damped Trend worksquot av Gardner og McKenzie og quotgolden Rulequot-artikkelen av Armstrong et al. for detaljer. Det er generelt tilrådelig å holde fast i modeller der minst en av p og q ikke er større enn 1, dvs. ikke prøv å passe på en modell som ARIMA (2,1,2), da dette sannsynligvis vil føre til overfitting og kvadrat-faktorquot problemer som er omtalt nærmere i notatene om den matematiske strukturen til ARIMA-modellene. Implementering av regneark: ARIMA-modeller som de som er beskrevet ovenfor, er enkle å implementere på et regneark. Forutsigelsesligningen er bare en lineær ligning som refererer til tidligere verdier av originale tidsserier og tidligere verdier av feilene. Dermed kan du sette opp et ARIMA prognose regneark ved å lagre dataene i kolonne A, prognoseformelen i kolonne B, og feilene (data minus prognoser) i kolonne C. Forutsigelsesformelen i en typisk celle i kolonne B ville ganske enkelt være et lineært uttrykk som refererer til verdier i forrige rader av kolonner A og C, multiplisert med de relevante AR - eller MA-koeffisientene lagret i celler andre steder på regnearket.
No comments:
Post a Comment